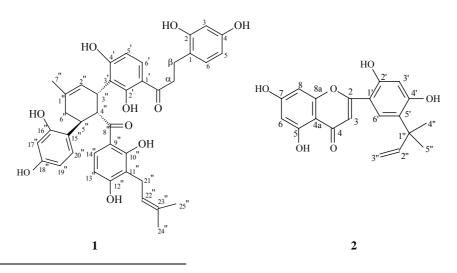
A New Diels-Alder Type Adduct and a New Flavone from the Stem and Root Bark of *Morus mongolica*


Jie KANG, Ruo Yun CHEN*, De Quan YU

Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050

Abstract: A new Diels-Alder type adduct mongolicin G (1) and a new flavone 5'-(1", 1"-dimethylallyl)-5,7,2',4'-tetrahydroxyflavone (2) were isolated from the stem and root bark of *Morus mongolica*. Their structures were determined by spectroscopic analysis and chiroptical methods.

Keywords: *Morus mongolica*, Diels-Alder type adduct, mongolicin G, flavone, 5'-(1",1"-dimethylallyl)-5,7,2',4'-tetrahydroxyflavone.

Mulberry tree belongs to the economically and medically important plant in genus *Morus*, because its leaves are an indispensable food for silk worms, and its root barks were used to treat diabetes, arthritis, and rheumatism in Chinese herbal medicine¹. The genus *Morus* comprises sixteen species and eleven of them in China. Many compounds, such as Diels-Alder type adducts and chalcone derivatives, were isolated from the genus. In an ongoing investigation on the stem and root bark of *Morus mongolica*, two new compounds (1 and 2) have been isolated. In this paper, the structural elucidation of the two new compounds was presented.

^{*} E-mail : ruoyunchen@hotmail.com

NO.	1		HMBC	NO.	2		HMBC
	δ_{H}	$\delta_{\rm C}$	correlations		δ_{H}	δ_{C}	correlations
1		118.4		2		162.6	
2		156.1		3	7.16,s	107.4	C-2,4a,1'
3	6.39,d,(2.5)	102.8	C-1,5	4		182.5	
4	,	157.1		4a		103.8	
5	6.25,dd,(8.5,2.5)	106.8	C-1,3	5		162.2	
6	6.91,d,(8.5)	130.7	C-2,4,β	6	6.19,d,(2.1)	99.1	C-8,4a
α	3.15, m, 2H	38.5	C-β,C=O	7		165.9	
β	2.84,t,(7.5),2H	25.5	C-1,2,C=O	8	6.43,d,(2.1)	94.2	C-6,4a
C=O		205.3		8a		158.2	
1'		112.6		1'		109.0	
2'		163.0		2'		157.8	
3'		115.5		3'	6.66,s	104.9	C-1',5'
4'		163.8		4'		160.2	
5'	6.33,d,(9.0)	109.6	C-1',3'	5'		126.4	
6'	7.69,d,(9.0)	130.7	C-2',4',C=O	6'	7.80,s	127.5	C-2,2',4',1"
1″		134.1		1″		40.2	
2″	5.67,brs	122.7	C-3',3",4",7"	2″	6.29,dd,(17.4, 10.5)	148.1	C-1",4",5"
3″	4.10,brs	31.9	-	3″	4.97,m,2H	109.9	C-1",2"
4″	4.66,t,(4.5)	46.7	C-2",3",6"	4″	1.50,s,3H	26.7	C-1",5'
5″	3.79,brs	35.9	C-1",20"	5″	1.50,s,3H	26.7	C-1",5'
6″	2.50,brd,(18.5) 2.23,m	31.7	C-2",4",7"				
7″	1.94,s, 3H	23.2	C-2",6"				
8″		208.5					
9″		112.4					
10"		164.0					
11″		115.2					
12"		163.5					
13″	6.45,d,(9.0)	107.9	C-9",11"				
14″	8.38,d,(9.0)	131.4	C-8",10",12"				
15″		121.1					
16″		155.8					
17″	6.55,d,(2.0)	103.0	C-15",19"				
18″		157.3					
19″	6.31,dd,(8.5,2.0)	106.9	C-15",17"				
20"	6.97,d,(8.5)	128.1	C-5",16",18"				
21″	3.28,d,(7.0),2H	21.6	C-10",12", 23"				
22″	5.20,t,(7.0)	122.6	C-24",25"				
23″		130.7	·				
24″	1.61,s,3H	25.2	C-25″				
25″	1.74,s,3H	17.2	C-24″				

Table 1 1 H (500 MHz) and 13 C (125 MHz) NMR spectral data for 1 and 2 in acetone-d₆, δ , ppm

Compound **1** was obtained as yellowish amorphous powder, $[\alpha]_{D}^{25}$ +166 (c 0.091, MeOH). The HR-FAB-MS indicated a molecular ion at m/z 680.2629 [M⁺] (calcd. 680.2621) corresponding to a molecular formula of C₄₀H₄₀O₁₀. Its IR spectrum revealed the presence of hydroxy (3315 cm⁻¹), carbonyl (1701 cm⁻¹), and aromatic rings (1616 cm⁻¹). The UV absorptions, maxima at 208 and 287 nm, indicated the presence of a conjugated system in the structure. The ¹H and ¹³C NMR spectral data of **1** exhibited structural feature of a Diels-Alder type adduct. The ¹H NMR spectrum of **1**

A New Diels-Alder Type Adduct and a New Flavone

showed signals of a γ , γ -dimethylally group at δ 1.61, 1.74 (s, each 3H), 3.28 (d, 2H, J =7.0 Hz) and 5.20 (t, 1H, J = 7.0 Hz) and the following signals of the protons: two double doublets, $\delta 6.31$ (dd, 1H, J = 8.5, 2.0 Hz, H-19'') and 6.25 (dd, 1H, J = 8.5, 2.5 Hz, H-5); six ortho coupled doublets, δ 6.97 (d, 1H, J = 8.5 Hz, H-20"), 6.45 (d, 1H, J = 9.0 Hz, H-13"), 8.38 (d, 1H, J = 9.0 Hz, H-14"), 6.33 (d, 1H, J = 9.0 Hz, H-5'), 7.69 (d, 1H, J = 9.0 Hz, H-6'), 6.91 (d, 1H, J = 8.5 Hz, H-6); two *meta* coupled doublets, δ 6.55 (d, 1H, J = 2.0 Hz, H-17"), 6.39 (d, 1H, J = 2.5 Hz, H-3); multiplets of ethylene protons, δ 3.15 (m, 2H, H- α), 2.84 (t, 2H, J = 7.5 Hz, H- β). These data suggested that 1 comprised two 1,2, 4-trisubstituted and two 1,2,3,4-tetrasubstituted benzene rings and an ethylene group moieties. The ¹³C NMR spectrum revealed the presence of 10 aliphatic carbons besides 30 aromatic and olefinic carbons. All the ¹H and ¹³C NMR assignments together with the HMBC correlations were listed in **Table 1**. Comparison of ¹H and ¹³C NMR data of 1 with those of kuwanon J^2 revealed the structure of 1 was same as the latter, except for an α , β saturated ketone in **1**, instead of an α , β unsaturated ketone in kuwanon J. The HMBC correlations also supported the structure of 1 as illustrated. The 3"-4"-cis, 4"-5"-trans relative configuration on the methycyclohexene-substituted ring was assigned by the coupling constant $(J_{3''H-4''H} = J_{4''H-5''H} = 4.5 \text{ Hz})^2$ and the positive optical rotation³. What's more, the absolute configuration of compound 1was 3''S, 4''R, 5''Swith positive Cotton effect at 280 nm³.

Compound **2** was obtained as yellowish powder. The molecular formula of **2** was determined by HR-EI-MS at m/z 354.1110 [M⁺] (calcd. 354.1103) corresponding to a molecular formula of C₂₀H₁₈O₆. The IR spectrum of **2** showed absorption bands at 3434, 1653 and 1616 cm⁻¹ assignable to hydroxyl, conjugated carbonyl and benzene ring. The ¹H NMR spectrum of **2** exhibited signals of an α , α -dimethylally group at δ 1.50 (s, 6H), 4.97 (m, 2H) and 6.29 (dd, 1H, J = 17.4, 10.5 Hz) and the following signals of the protons: two *meta* coupled doublets, δ 6.19 (d, 1H, J = 2.1 Hz, H-6), 6.43 (d, 1H, J = 2.1 Hz, H-8); three single signals, δ 6.66 (s, 1H, H-3'), 7.80 (s, 1H, H-6') and 7.16 (s, 1H, H-3). The ¹³C NMR spectrum revealed the presence of 3 aliphatic carbons besides 17 aromatic and olefinic carbons. Total ¹H and ¹³C NMR assignments together with the HMBC correlations were listed in **Table 1**. In the HMBC spectrum, CH long-range correlations revealed an α , α -dimethylally group at C-5'. Thus, compound **2** was assigned as 5'-(1",1"-dimethylallyl)-5,7,2',4'-tetrahydroxyflavone.

Acknowledgments

We thank the National Natural Science Foundation of China (NO. 20432030) for financial support.

References

- 1. S. J. Dai, Z. M. Mi, Z. B. Ma, et al., Planta Med., 2004, 70, 758.
- 2. S. Ueda, T. Nomura, T. Fukai, et al., Chem. Pharm. Bull., 1982, 30, 3042.
- 3. Y. Hano, S. Suzuki, T. Nomura, et al., Heterocycles, 1988, 27, 2315.

Received 3 March, 2005